Leaf Anatomy of Orcuttieae (poaceae: Chloridoideae): More Evidence of C4 Photosynthesis without Kranz Anatomy

نویسندگان

  • LAURA M. BOYKIN
  • WILLIAM T. POCKMAN
  • TIMOTHY K. LOWREY
چکیده

C4 photosynthesis without Kranz anatomy (single-cell C4 photosynthesis) occurs in only 0.003% of known species of C4 flowering plants. To add insight into the evolution of C4 photosynthesis, we studied the tribe Orcuttieae (Poaceae: Chloridoideae), which has species that can grow under both aquatic and terrestrial conditions, and utilize single-cell C4 photosynthesis when growing submerged. Carbon isotope ratios from aquatic, floating, and terrestrial leaves were in the range 212.25 to 214.31, suggesting that all species carry out C4 photosynthesis. Using light microscopy, we examined the anatomy of aquatic, floating and terrestrial leaves from eight of the nine species in the tribe to assess the pattern of evolution of C4 photosynthesis and Kranz anatomy among these vernal pool grasses. Kranz anatomy was present in all floating and terrestrial leaves of Orcuttia californica, O. inaequalis, O. pilosa, O. tenuis, O. viscida,Tuctoria greenei, T. mucronata, and Neostapfia colusana. Although carbon isotope data indicated C4 photosynthesis, aquatic leaves of all members of Orcuttia lacked Kranz anatomy, while aquatic leaves of Tuctoria and Neostapfia possessed Kranz anatomy. When considered in a phylogenetic context, these findings support previously proposed hypotheses suggesting that Orcuttieae are derived from a terrestrial ancestor and are now becoming more specialized to an aquatic environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deconstructing Kranz anatomy to understand C4 evolution.

C4 photosynthesis is a complex physiological adaptation that confers greater productivity than the ancestral C3 photosynthetic type in environments where photorespiration is high. It evolved in multiple lineages through the coordination of anatomical and biochemical components, which concentrate CO2 at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). In most C4 plan...

متن کامل

Differentiation of C4 photosynthesis along a leaf developmental gradient in two Cleome species having different forms of Kranz anatomy

In family Cleomaceae there are NAD-malic enzyme-type C4 species having different forms of leaf anatomy. Leaves of Cleome angustifolia have Glossocardioid-type anatomy with a single complex Kranz unit which surrounds all the veins, while C. gynandra has Atriplicoid anatomy with multiple Kranz units, each surrounding an individual vein. Biochemical and ultrastructural differentiation of mesophyll...

متن کامل

Structural and physiological analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C3, intermediate, and C4 photosynthesis

In subfamily Salsoloideae (family Chenopodiaceae) most species are C4 plants having terete leaves with Salsoloid Kranz anatomy characterized by a continuous dual chlorenchyma layer of Kranz cells (KCs) and mesophyll (M) cells, surrounding water storage and vascular tissue. From section Coccosalsola sensu Botschantzev, leaf structural and photosynthetic features were analysed on selected species...

متن کامل

From proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis.

In this review, we examine how the specialized "Kranz" anatomy of C4 photosynthesis evolved from C3 ancestors. Kranz anatomy refers to the wreath-like structural traits that compartmentalize the biochemistry of C4 photosynthesis and enables the concentration of CO2 around Rubisco. A simplified version of Kranz anatomy is also present in the species that utilize C2 photosynthesis, where a photor...

متن کامل

Water relations traits of C4 grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability

The repeated evolution of C4 photosynthesis in independent lineages has resulted in distinct biogeographical distributions in different phylogenetic lineages and the variants of C4 photosynthesis. However, most previous studies have only considered C3/C4 differences without considering phylogeny, C4 subtype, or habitat characteristics. We hypothesized that independent lineages of C4 grasses hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008